5A Quiz 3 : 1.6, 3.41 .8
(1) For what values of x is the following function continuous

$$
f(x)=\frac{4}{2 \sin x+1}
$$

$f(x)$ is counts on its domain, so find the domain:
Denominator ran't be zero so $2 \sin x+1 \neq 0 \Rightarrow \sin x \neq-1 / 2$
$f(x)$ cunts for all real numbers
except $x=\frac{2 \pi}{6}+2 \pi k, 1 \frac{11 \pi}{6}+2 \pi k, k$ integer
(2). Calculate the following limits using algebraic techniques (ie. not a graph of table of numbers). Show work.
(3 points eacj)
(c) $\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x^{2}-4}=\square$.
(d) $\lim _{x \rightarrow 25} \frac{\sqrt{x}-5}{x-25}=\underline{\frac{1}{10}}$.

$$
=\frac{0}{-4}=0
$$

$$
110<1
$$

Write $\lim _{1}$ at each $\lim _{x \rightarrow 25} \frac{\sqrt{x}-5}{x-25} \frac{\sqrt{x}+5}{\sqrt{x}-5}=\lim _{x \rightarrow 25} \frac{x-25}{(x-25) \sqrt{x}+5}$
(c) $\begin{aligned} \lim _{x \rightarrow \infty} & \frac{2 x^{2}-7 x-}{x^{2}-16} \\ & \end{aligned}$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 x^{2}-7 x-4}{x^{2}-16} \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}} & =\lim _{x \rightarrow \infty} \frac{2-\frac{7}{x}-\frac{4}{x^{2}}}{1-\frac{16}{x^{2}}} \\
& =\frac{2-0-0}{1-0} \\
& =2
\end{aligned}
$$

(d) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+1}}{3 x+6}=$ \qquad
Show details so it is clear you understand

$$
\begin{aligned}
& \frac{\sqrt{x^{2}+1}}{3 x+6}=\frac{\sqrt{x^{2}\left(1+\frac{1}{x^{2}}\right)}}{3 x+6}=\frac{1 x \sqrt{1+\frac{1}{x^{2}}}}{3 x+6} \\
&=\frac{-x \sqrt{1+\frac{1}{x^{2}}}}{3 x+6} \frac{1}{x}=\frac{-\sqrt{1+\frac{1}{x^{2}}}}{3+\frac{6}{x}} \\
&\left.\sqrt{x^{2}}=1 x \mid=-x \sin 6 x<0\right)
\end{aligned}
$$

you need to explain why t the minus

50 appears.
(3) Given $f(x)=\left\{\begin{array}{ll}x+2 c & \text { if } \quad x>4 \\ c x^{2} & \text { if } \quad x \leq 4\end{array}\right.$ find the value of c so that $\lim _{x \rightarrow 4} f(x)$ exists. Explain.

$$
\begin{aligned}
& \lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{-}} c x^{2}=16 c \\
& \lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{-}} x+2 c=4+2 c
\end{aligned}
$$

For $\lim _{x \rightarrow 4} f(x)$ to exist, we need $\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{+}} f(x)$

$$
\begin{aligned}
16 c & =4+2 c \\
c & =217
\end{aligned}
$$

(4) Write out the formal definition of $\lim _{x \rightarrow \infty} f(x)=-\infty$

If for every $M>0$ there exist an $N>0$ such that if $x>N$ then $f(x)<-M$, we say

$$
\lim _{x \rightarrow \infty} f(x)=-\infty
$$

